首页> 外文OA文献 >Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams
【2h】

Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams

机译:具有渐近高阶应变梯度的纳米束精确变分非局部应力建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article presents a complete and asymptotic representation of the one-dimensional nanobeam model with nonlocal stress via an exact variational principle approach. An asymptotic governing differential equation of infinite-order strain gradient model and the corresponding infinite number of boundary conditions are derived and discussed. For practical applications, it explores and presents a reduced higher-order solution to the asymptotic nonlocal model. It is also identified here and explained at length that most publications on this subject have inaccurately employed an excessively simplified lower-order model which furnishes intriguing solutions under certain loading and boundary conditions where the results become identical to the classical solution, i.e., without the small-scale effect at all. Various nanobeam examples are solved to demonstrate the difference between using the simplified lower-order nonlocal model and the asymptotic higher-order strain gradient nonlocal stress model. An important conclusion is the discovery of significant over- or underestimation of stress levels using the lower-order model, particularly at the vicinity of the clamped end of a cantilevered nanobeam under a tip point load. The consequence is that the design of a nanobeam based on the lower-order strain gradient model could be flawed in predicting the nonlocal stress at the clamped end where it could, depending on the magnitude of the small-scale parameter, significantly over- or underestimate the failure criteria of a nanobeam which are governed by the level of stress.
机译:本文通过精确的变分原理方法,给出了具有非局部应力的一维纳米束模型的完整且渐近表示。推导并讨论了无穷阶应变梯度模型的渐近控制微分方程和相应的无穷多个边界条件。对于实际应用,它探索并提出了渐近非局部模型的简化高阶解。在此也可以确定并详细解释,关于该主题的大多数出版物都使用了过于简化的低阶模型,该模型在某些载荷和边界条件下提供了有趣的解,这些结果与经典解相同,即没有小规模效应。解决了各种纳米束示例,以证明使用简化的低阶非局部模型和渐近高阶应变梯度非局部应力模型之间的区别。一个重要的结论是,使用低阶模型发现了应力水平的明显过高或过低的估计,尤其是在尖端载荷作用下悬臂纳米梁的夹紧端附近。结果是,基于低阶应变梯度模型的纳米束设计可能会在预测被夹持端的非局部应力方面存在缺陷,根据小尺度参数的大小,该应力可能会明显高估或低估纳米束的失效标准取决于应力水平。

著录项

  • 作者

    Lim, C. W.; Wang, C. M.;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号